Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Clin Virol Plus ; 2(3): 100084, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2301034
2.
Respir Med Res ; 83: 100990, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2276566

ABSTRACT

This multicenter observational study included 171 COVID-19 adult patients hospitalized in the ICUs of nine hospitals in Lombardy (Northern Italy) from December, 1st 2021, to February, 9th 2022. During the study period, the Delta/Omicron variant ratio of cases decreased with a delay of two weeks in ICU patients compared to that in the community; a higher proportion of COVID-19 unvaccinated patients was infected by Delta than by Omicron whereas a higher rate of COVID-19 boosted patients was Omicron-infected. A higher number of comorbidities and a higher comorbidity score in ICU critically COVID-19 inpatients was positively associated with the Omicron infection as well in vaccinated individuals. Although people infected by Omicron have a lower risk of severe disease than those infected by Delta variant, the outcome, including the risk of ICU admission and the need for mechanical ventilation due to infection by Omicron versus Delta, remains uncertain. The continuous monitoring of the circulating SARS-CoV-2 variants remains a milestone to counteract this pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/epidemiology , Inpatients , Intensive Care Units , Italy/epidemiology
3.
J Heart Lung Transplant ; 2022 Nov 06.
Article in English | MEDLINE | ID: covidwho-2230042

ABSTRACT

The measure of torquetenovirus (TTV) viremia is widely recognized as an optimal biomarker of an individual immune status. In the context of COVID-19, the predictive role of TTV load with regard to vaccine response has also been demonstrated, suggesting other intriguing applications for this widespread anellovirus.

4.
EBioMedicine ; 88: 104435, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2178117

ABSTRACT

BACKGROUND: To date, only a few studies reported data regarding the development of mucosal immune response after the BNT162b2-booster vaccination. METHODS: Samples of both serum and saliva of 50 healthcare workers were collected at the day of the booster dose (T3) and after two weeks (T4). Anti-S1-protein IgG and IgA antibody titres and the neutralizing antibodies against the Wuhan wild-type Receptor-Binding Domain in both serum and saliva were measured by quantitative and competitive ELISA, respectively. Data were compared with those recorded after the primary vaccination cycle (T2). Neutralizing antibodies against the variants of concern were measured in those individuals with anti-Wuhan neutralizing antibodies in their saliva. FINDINGS: After eight months from the second dose, IgG decreased in both serum (T2GMC: 23,838.5 ng/ml; T3GMC: 1473.8 ng/ml) and saliva (T2GMC: 12.9 ng/ml; T3GMC: 0.3 ng/ml). Consistently, serum IgA decreased (T2GMC: 48.6 ng/ml; T3GMC: 6.4 ng/ml); however, salivary IgA showed a different behaviour and increased (T2GMC: 0.06 ng/ml; T3GMC: 0.41 ng/ml), indicating a delayed activation of mucosal immunity. The booster elicited higher titres of both IgG and IgA when compared with the primary cycle, in both serum (IgG T4GMC: 98,493.9 ng/ml; IgA T4GMC: 187.5 ng/ml) and saliva (IgG T4GMC: 21.9 ng/ml; IgA T4GMC: 0.65 ng/ml). Moreover, the booster re-established the neutralizing activity in the serum of all individuals, not only against the Wuhan wild-type antigen (N = 50; INH: 91.6%) but also against the variants (Delta INH: 91.3%; Delta Plus INH: 89.8%; Omicron BA.1 INH: 85.1%). By contrast, the salivary neutralizing activity was high against the Wuhan antigen in 72% of individuals (N = 36, INH: 62.2%), but decreased against the variants, especially against the Omicron BA.1 variant (Delta N = 27, INH: 43.1%; Delta Plus N = 24, INH: 35.2%; Omicron BA.1 N = 4; INH: 4.7%). This was suggestive for a different behaviour of systemic immunity observed in serum with respect to mucosal immunity described in saliva (Wald chi-square test, 3 df of interaction between variants and sample type = 308.2, p < 0.0001). INTERPRETATION: The BNT162b2-booster vaccination elicits a strong systemic immune response but fails in activating an effective mucosal immunity against the Omicron BA.1 variant. FUNDING: This work was funded by the Department of Medicine and Surgery, University of Insubria, and supported by Fondazione Umberto Veronesi (COVID-19 Insieme per la ricerca di tutti, 2020), Italy.


Subject(s)
COVID-19 , Immunity, Mucosal , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Antibodies, Neutralizing , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Vaccination
5.
Euro Surveill ; 28(2)2023 01.
Article in English | MEDLINE | ID: covidwho-2198368

ABSTRACT

With numbers of COVID-19 cases having substantially increased at the end of 2022 in China, some countries have started or expanded testing and genomic surveillance of travellers. We report screening results in Italy in late December 2022 of 556 flight passengers in provenance from two Chinese provinces. Among these passengers, 126 (22.7%) tested SARS-CoV-2 positive. Whole genome sequencing of 61 passengers' positive samples revealed Omicron variants, notably sub-lineages BA.5.2.48, BF.7.14 and BQ.1.1, in line with data released from China.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , China/epidemiology , Italy/epidemiology
6.
Viruses ; 14(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110272

ABSTRACT

OBJECTIVES: Torquetenovirus (TTV) and Redondovirus (ReDoV) are the most prevalent viruses found in the human respiratory virome in viral metagenomics studies. A large-scale epidemiological study was performed to investigate their prevalence and loads in saliva samples according to SARS-CoV-2 status. METHODS: Saliva samples from 448 individuals (73% SARS-CoV-2 negative and 27% SARS-CoV-2 positive) aged 23-88 years were tested. SARS-CoV-2 and TTV were determined in saliva by specific qualitative and quantitative real-time PCRs, respectively. A sub-cohort of 377 subjects was additionally tested for the presence and load of ReDoV in saliva, and a different sub-cohort of 120 subjects for which paired saliva and plasma samples were available was tested for TTV and ReDoV viremia at the same timepoints as saliva. RESULTS: TTV in saliva was 72% prevalent in the entire cohort, at a mean DNA load of 4.6 log copies/mL, with no difference regardless of SARS-CoV-2 status. ReDoV was found in saliva from 61% of the entire cohort and was more prevalent in the SARS-CoV-2-negative subgroup (65% vs. 52%, respectively). In saliva, the total mean load of ReDoV was very similar to the one of TTV, with a value of 4.4 log copies/mL. The mean viral loads in subjects infected with a single virus, namely, those infected with TTV or ReDoV alone, was lower than in dually infected samples, and Tukey's multiple-comparison test showed that ReDoV single-infected samples resulted in the only true outlier (p = 0.004). Differently from TTV, ReDoV was not detected in any blood samples. CONCLUSIONS: This study establishes the prevalence and mean value of TTV and ReDoV in saliva samples and demonstrates the existence of differences between these two components of the human virome.


Subject(s)
COVID-19 , DNA Virus Infections , Torque teno virus , Humans , Torque teno virus/genetics , SARS-CoV-2/genetics , Saliva , COVID-19/epidemiology , Viral Load , DNA, Viral/analysis
9.
Virol J ; 19(1): 79, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1846849

ABSTRACT

BACKGROUND: Torquetenovirus (TTV), a widespread anellovirus recognized as the main component of the healthy human virome, displays viremia that is highly susceptible to variations in immune competence. TTV possesses microRNA (miRNA)-coding sequences that might be involved in viral immune evasion. Among TTV-encoded miRNAs, miRNA t1a, t3b, and tth8 have been found in biological fluids. Here, the presence of TTV DNA and TTV miRNAs in the plasma of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected subjects was investigated to monitor the possible association with coronavirus disease 2019 (COVID-19) severity. METHODS: Detection of TTV DNA and miRNA t1a, t3b, and tth8 was investigated in plasma samples of 56 SARS-CoV-2-infected subjects with a spectrum of different COVID-19 outcomes. TTV DNA and TTV miRNAs were assessed with a universal single step real-time TaqMan PCR assay and miRNA quantitative RT-PCR miRNA assay, respectively. RESULTS: The TTV DNA prevalence was 59%, whereas at least one TTV miRNA was found in 94% of the patients tested. miRNA tth8 was detected in 91% of subjects, followed by miRNAs t3b (64%) and miRNAt1a (30%). Remarkably, although TTV DNA was unrelated to COVID-19 severity, miRNA tth8 was significantly associated with the degree of disease (adjusted incidence rate ratio (IRR) 2.04, 95% CI 1.14-3.63, for the subjects in the high severity group compared to those in the low severity group). CONCLUSIONS: Our findings encourage further investigation to understand the potential role of TTV miRNAs in the different outcomes of COVID-19 at early and late stages.


Subject(s)
COVID-19 , MicroRNAs , Torque teno virus , DNA, Viral/genetics , Humans , MicroRNAs/genetics , SARS-CoV-2/genetics , Torque teno virus/genetics
10.
J Clin Virol Plus ; 2(3): 100082, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1821341

ABSTRACT

Given the ongoing COVID19 pandemic, the decline in serological response since dose 2, and the upcoming flu season, COVID19 vaccines will increasingly be administered in combination with vaccines against seasonal pathogens. It is of interest to confirm that concurrent vaccination against influenzavirus has no negative impact on serological response to SARS CoV-2. Anti-Spike IgG and Anti-Receptor Binding Domain (RBD) Neutralizing Antibodies (NAb) in serum  was assessed in 64 immunocompetent healthcare workers (HCW) before and 14 days post the third dose of BNT162b2 vaccine (Comirnaty®, Pfizer/BioNTech) or BNT162b2 plus quadrivalent flu vaccine (Vaxigript Tetra ®Sanofi Pasteur) on the same day. We report here safety and efficacy of combined BNT162b2 and flu vaccine in 64 healthcare workers at a single institution. No differences were found in adverse events or anti-Spike antibody levels.

11.
Emerg Infect Dis ; 28(6): 1301-1302, 2022 06.
Article in English | MEDLINE | ID: covidwho-1789326

ABSTRACT

We report 25 cases of infection with SARS-CoV-2 Omicron variant containing spike protein L452R mutation in northern Lombardy, Italy. Prevalence of this variant was >30% in this region, compared with <0.5% worldwide. Many laboratories are using previously developed L452R-specific PCRs to discriminate Omicron from Delta mutations, but these tests may be unreliable.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
The New Microbiologica ; 44(4):205, 2021.
Article in English | ProQuest Central | ID: covidwho-1696320

ABSTRACT

The SARS-CoV-2 pandemic is ongoing worldwide, causing prolonged pressure on molecular diagnostics. Viral antigen (Ag) assays have several advantages, ranging from lower cost to shorter turnaround time to detection. Given the rare occurrence of low-load viremia, antigen assays for SARSCoV-2 have focused on nasopharyngeal swab and saliva as biological matrices, but their effectiveness must be validated. We assayed here the performances of the novel quantitative Liaison® SARSCoV-2 Ag assay on 119 nasopharyngeal swabs and obtained results were compared with Hologic Panther and Abbott m2000 RT-qPCR. The Ag assay demonstrated a good correlation with viral load, shorter turnaround time, and favorable economics. The best performance was obtained in the acute phase of disease.

13.
JMIR Res Protoc ; 11(1): e29892, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1649492

ABSTRACT

BACKGROUND: The novel coronavirus has a high mortality rate (over 1% for patients older than 50 years). This can only be partially ascribed to other comorbidities. A possible explanation is a factor that assures a prompt response to SARS-CoV-2 in younger people, independent from the novelty of the virus itself. A factor is believed to stimulate the immune system and provide immunity against more antigens. The only external stimulation received by healthy people is vaccination (eg, the diphtheria, tetanus, and pertussis [DTP] vaccine). One hypothesis is that vaccination helps develop specific immunity but generates sprouting immunity against antigens in transit. The underlying immunological phenomena are the "bystander effect" and "trained immunity." The developed immunity gives protection for years until it naturally fades out. After the fifth decade of life, the immune system is almost incompetent when a viral infection occurs, and thus, at this stage, the novel coronavirus can enter the body and cause acute respiratory distress syndrome. OBJECTIVE: The initial aim is to demonstrate that blood monocytes and natural killer cells show overpowering hyperactivity, while CD4+ and CD8+ T cells experience impediments to their defensive functions in patients with severe SARS-CoV-2 infection. The secondary objectives are to correlate clinical data and vaccination history with laboratory immune patterns in order to identify protective factors. Subsequently, we are also interested in characterizing the phenotypes and state of the degree of activation of peripheral blood mononuclear cells, including monocytes, natural killer cells, and CD4+ and CD8+ T cells, in healthy subjects vaccinated with the Pfizer vaccine. METHODS: Data will be collected using the following 3 approaches: (1) an experimental analysis to study the innate immune response and to identify genetic profiles; (2) an epidemiological analysis to identify the patients' vaccination history; and (3) a clinical analysis to detect the immunological profile. RESULTS: The protocol was approved by the Ethics Committee on April 16, 2020, and the study started on April 27, 2020. As of February 2021, enrollment has been completed. Immunological analysis is ongoing, and we expect to complete this analysis by December 2022. CONCLUSIONS: We will recognize different populations of patients, each one with a specific immunological pattern in terms of cytokines, soluble factor serum levels, and immune cell activity. Anamnestic data, such as preceding vaccinations and comorbidities, biochemical findings like lymphocyte immunophenotyping, and pre-existing persistent cytomegalovirus infection, allow depicting the risk profile of severe COVID-19. Proof of the roles of these immunological phenomena in the development of COVID-19 can be the basis for the implementation of therapeutic immunomodulatory treatments. TRIAL REGISTRATION: ClinicalTrials.gov NCT04375176; https://clinicaltrials.gov/ct2/show/NCT04375176. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29892.

14.
Int J Infect Dis ; 116: 271-272, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1596505

ABSTRACT

The Delta variant of concern (VOC) of SARS-CoV-2 has become dominant worldwide. In this article, we report a cluster caused by B.1.617.2 harboring the additional mutation of concern (MOC) F490S. We observed that 5 fully vaccinated subjects aged between 47 and 84 years were infected with this variant. The immune escape mutation F490S, first identified in the Lambda VOI, appears to impair vaccine efficacy and is rapidly increasing in prevalence worldwide.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Middle Aged , Mutation , SARS-CoV-2/genetics
15.
EBioMedicine ; 75: 103788, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587926

ABSTRACT

BACKGROUND: Although the BNT162b2 COVID-19 vaccine is known to induce IgG neutralizing antibodies in serum protecting against COVID-19, it has not been studied in detail whether it could generate specific immunity at mucosal sites, which represent the primary route of entry of SARS-CoV-2. METHODS: Samples of serum and saliva of 60 BNT162b2-vaccinated healthcare workers were collected at baseline, two weeks after the first dose and two weeks after the second dose. Anti-S1-protein IgG and IgA total antibodies titres and the presence of neutralizing antibodies against the Receptor Binding Domain in both serum and saliva were measured by quantitative and by competitive ELISA, respectively. FINDINGS: Complete vaccination cycle generates a high serum IgG antibody titre as a single dose in previously infected seropositive individuals. Serum IgA concentration reaches a plateau after a single dose in seropositive individuals and two vaccine doses in seronegative subjects. After the second dose IgA level was higher in seronegative than in seropositive subjects. In saliva, IgG level is almost two orders of magnitude lower than in serum, reaching the highest values after the second dose. IgA concentration remains low and increases significantly only in seropositive individuals after the second dose. Neutralizing antibody titres were much higher in serum than in saliva. INTERPRETATION: The mRNA BNT162b2 vaccination elicits a strong systemic immune response by drastically boosting neutralizing antibodies development in serum, but not in saliva, indicating that at least oral mucosal immunity is poorly activated by this vaccination protocol, thus failing in limiting virus acquisition upon its entry through this route. FUNDING: This work was funded by the Department of Medicine and Surgery, University of Insubria, and partially supported by Fondazione Umberto Veronesi (COVID-19 Insieme per la ricerca di tutti, 2020).


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , Immunity, Mucosal/drug effects , Immunization, Secondary , Adult , BNT162 Vaccine/immunology , COVID-19/prevention & control , Female , Health Personnel , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , Saliva/immunology
16.
Emerg Microbes Infect ; 10(1): 2010-2015, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526149

ABSTRACT

The SARS-CoV-2 variant of concern (VOC) "Delta" is currently defined by PANGOLIN as a cluster of 33 different AY sublineages. Delta (in particular B.1.617.2) is largely and rapidly replacing the Alpha VOC as the dominant clade in most countries. To date, variations in the Spike protein of the Delta VOC have largely been limited. We report here the results of a genomic surveillance programme from Northern Italy. We identified several Delta sublineages harbouring mutations previously reported in GISAID at extremely low frequencies and in different combinations. Two patients (one of them vaccinated) tested positive for a Delta sublineage harbouring S71F, T250I, T572I and K854N. More patients tested positive for G769 V plus C1248F, A352S, and R158G and C1248F, respectively. Genomic surveillance of Delta variants should be encouraged to anticipate immune escape and deploy countermeasures.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Evolution, Molecular , Female , Humans , Italy/epidemiology , Male , Middle Aged , Young Adult
17.
Emerg Infect Dis ; 27(10): 2728-2731, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1486746

ABSTRACT

We report in vivo selection of a severe acute respiratory syndrome coronavirus 2 spike mutation (Q493R) conferring simultaneous resistance to bamlanivimab and etesivimab. This mutation was isolated from a patient who had coronavirus disease and was treated with these drugs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
20.
Oral Dis ; 27 Suppl 3: 707-709, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1434792

ABSTRACT

We report two cases of COVID-19 showing negative respiratory swabs but positive salivary samples at the same time. These findings rise the concern about how to manage these patients before hospital discharging, thus avoiding contagion among their family members or a second coronavirus wave once the lockdown is over.


Subject(s)
COVID-19 , Communicable Disease Control , Hospitals , Humans , Patient Discharge , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL